2004 DOE Hydrogen, Fuel Cells, & Infrastructure Technologies

Development of High-Temperature Membranes and Improved Cathode Catalysts

Jeremy P. Meyers
UTC Fuel Cells
May 2004

This presentation does not contain any proprietary or confidential information.

Objectives

Ultimate goals:

- Develop and demonstrate an advanced polymer membrane able to operate at near-ambient pressure (1-1.5 bar) in the temperature range of 120 to 150°C, capable of meeting DOE goals for performance
- Develop and demonstrate improved Pt-based cathode catalysts that will enable the reduction of Pt loading to 0.05 mg/cm² and meet DOE goals for performance.

Objectives (high-temp membrane)

- Optimize candidate membranes for operation at 120°C, 50% RH
- Characterize membranes for suitability in high-temperature fuel cell
 - ex-situ testing
 - » conductivity at various humidity
 - » water uptake
 - » tensile strength
 - in-cell tests:
 - » performance at 120°C and 50% RH, 1.5 kPa
 - » 100 hours stability tests
 - » fuel crossover
 - » elemental analysis of the exhaust water

Objectives (improved cathode catalyst)

- Select most promising alloy catalysts for evaluation in fuel cell
- Optimize fabrication processes
- Conduct testing to evaluate performance and stability (in liquid cell).
- Compare performance of submitted catalysts to that of TEC10E50E (TKK's 46.7% Pt/C)

Budget

- Total funding for the project is \$9.5 M
- UTC FC cost shares 20% on this project, including cost share by IONOMEM corporation and UTRC.
- UTCFC spend in FY03 is \$722k; DOE spend is \$2.9 M, for a total project spend of \$3.32 M

Technical Barriers and Targets

- DOE Technical Barriers for Fuel Cell Components
 - P. Durability
 - Q. Electrode Performance
 - R. Thermal and Water Management
- DOE Technical Target for Fuel Cell Stack System for 2010

Durability5000h

CO tolerance (2% air bleed)
 500ppm ss /1000 ppm transient

Power density*
 650 W/L excluding H2 storage

Electrode performance0.2 g Pt/kW

^{*} operate in thermal and water balance

Approach

- Phase 1: Synthesize, characterize hightemperature membranes and improved Ptbased catalysts. Compare to issued specifications
- Phase 2: Fabricate, optimize, and test laboratory-scale catalyst coated membranes with top two candidates from phase 1.
- Phase 3: Fabricate full-size CCM's using best membrane and best catalyst, test in multi-cell stacks.

Project Safety

- All testing is done in well-ventilated, automated test stands with hydrogen detection and safe shutdown procedures
- All test hardware for program has been tested and evaluated in contractor safety review process

Project Timeline

A United Technologies Company

Conductivity vs. DoE Targets BekkTech results

Conductivity vs. RH % @ 120 C

Water Uptake

- Vapor conditions
 - membranes equilibrated at 40 % RH vapor at 120
 °C.
- Liquid boiling
 - Ambient pressure.

FC Initial Performance: H₂/Air

Cell Performance at 120 C, 0 hours 50% RH, 150 kPa (abs), 30%/ 25% (H2/Air) Utilizations

FC 100 Hour Performance: H₂/Air

Cell Performance at 120 C, 100 hours 50% RH, 150 kPa (abs), 30%/ 25% (H2/Air) Utilizations

SRI, PSU membranes failed before 100 hours

Downselect Scoring

Nafion is the standard

Criteria	Criteria	Weight	Ranking (1 to 5, $5 = \text{highest}$, $0 = \text{failure}$)					
	Subcategory		Nafion	Ionomem	VaTech	Princeton	SRI	PSU
Conductivity	20% RH*	0.125	3	4	1	2	1	1
- 50 % Total	50% RH*	0.25	3	4	2	2	2	1
	100% RH*	0.125	3	3	4	3	4	3
Water	40 % RH	0.15	3	3	1	2	2	2
Uptake -	Vapor							
20% Total	Liquid	0.05	3	2	5	1	1	1
Performance	IR BOL	0.1	3	4	3	2	1	2
- 30 % Total	IR EOL	0.1	3	4	3	1	0	0
	crossover	0.1	3	1	3	3	0	0
	EOL							
SCORE = Σ (Weight *		3.0	3.325	2.425	2.075	1.575	1.3	
Ranking)								

Downselect Results

Ionomem next phase (CCM opt, scaling)

Nafion 112

VaTech improvement of the properties

Princeton failed

SRI failed

PSU failed

Electrochemical Area and ORR Activities (liquid cell)

	I	ORR activity, 0.9V vs. RHE			
Catalyst	ECA, m ² /g (button)	μA/cm ²	mass activity, A/g Pt		
TKK- Pt/C	107	90	96		
UTC-PtCo/C	74	274	203		
UTC-PtIrCo/C	110.6	166	184		
USC PtCo/C	29.6	231	68		
NEU-PtCo	40.2	300	120		

DITE

Cyclic Durability Test

Subscale Fuel Cell Performance of the Catalysts

Anode: TEC10E50E Pt/C,

Membrane: Nafion112,

Temperature: 65°C,

Pressure: 101kPa,

Fuel: H₂,

Oxidant: air

Downselect Results

UTC FC PtCo / C

UTC FC PtIrCo / C

next phase: CCM optimization and scale-up

TKK Pt /C TEC10E50E

NEU PtCo / C

USC PtNi

USC PtCo / C

improvement of the properties

stability failed

performance failed

Interactions and Collaborations

Group	Principal Investigator	Approach			
IONOMEM	Mr. Leonard Bonville	Hygroscopic solid ion conductor (e.g., zirconium phosphate,etc) filled Nafion®)			
Penn State University	Prof. Digby Macdonald	Sulfones and sulfoxides of aromatic PPBP and aliphatic PVA. Covalent sulfonic acid bonded PEEK, PBI and PPBP			
Princeton University	Prof. Andrew Bocarsly	Layered sulfonated Polystyrene/Fluoropolymer system			
Stanford Research Institute	Dr. Susanna Ventura	Sulfonated PEEK-PBI-PAN			
Virginia Tech	Prof. James McGrath	Sulfonated Poly(arylene ether sulfone)			

UTRC			
Dr. Ned Cipollini			
MEA fabrication and optimization			

UTC FC	
Dr. Jeremy Meyers,	
Dr. Lesia Protsailo	
General coordination.	
System optimization.	
Stack demonstration	

Interactions and collaborations

Group	Principal Investigator	Approach
Northeastern University	Prof. Sanjeev Mukerjee	Micellar Pt nano cluster synthesis, colloidal sol synthesis of binary Pt alloys.
University of South Carolina	Prof. Branko Popov	Pulse electro-deposition of Pt and Pt alloys on Carbon. [Pt and Pt-X, X=Fe, Ni, Co, Mn and Cu]
UTC Fuel Cells	Dr. Jeremy Meyers, Dr. Lesia Protsailo	Carbothermal synthesis of binary and ternary Pt alloys. [Pt-Ir-X and Pt-Rh-X, [X =Ni, Co and V]]
Case Western Reserve University	Prof. Al Anderson	Quantum chemical modeling of Pt alloys and ORR.
UT Research Center	Dr. Ned Cipollini	Reproducible and stack size CCM fabrication.

^{*} Consulting on characterization techniques

Phil Ross, LBNL

Future work

- Optimize MEA with Nafion/hygroscopic compound composites for high-temperature operation, demonstrate performance in cell
- Improve properties and low-RH conductivity of BPSH by composites and investigation of ionic liquids
- Optimize MEA for PtCo, PtIrCo performance on H2/air, demonstrate performance in cell
- Optimize particle size for PtCo formation by colloidal synthesis
- Construct and test multi-cell stack of best membrane system and best catalyst system.

